Contenido de un Estudio Geotécnico

Uno de los aspectos más importantes en una edificación es la interacción entre suelo y la estructura, siendo por ello que el estudio geotécnico del terreno donde se va a edificar es la piedra angular para todo el proyecto y su seguridad.

Lo que viene a continuación está tomado de un artículo escrito por el Ing. Edinson Guánchez (Msc),Profesor del Master de Cimentaciones (MCI) de Zigurat, Jefe del Dpto. de Geotecnia (Universidad de Carabobo, Venezuela)
y, en mi opinión, este contenido resume de manera práctica los aspectos más importantes que debe contener un estudio geotécnico:

1. Introducción:

Donde se indique el alcance del Estudio Geotécnico y a cual tipo de obra está dirigido. En este punto se recomienda dejar claro el nombre del proyecto para el cual fue elaborado el informe e indicar el ente que lo solicita, con la finalidad de evitar que el mismo pueda ser utilizado para otros fines.

2. Descripción del Proyecto:

Donde se indique el uso de la edificación, materiales constructivos (acero, concreto, madera, etc.), orden de magnitud de las cargas consideradas, altura de la edificación, extensión en planta, descripción de características arquitectónicas y estructurales tales como: altura total de la edificación, presencia de sótanos, alturas de entrepiso, entre otras.

3. Objetivos:

Se debe indicar el objetivo general del informe y los objetivos específicos que permitirán alcanzarlo. Los objetivos de un Estudio Geotécnico para la construcción de una vialidad son totalmente diferentes a los planteados en la construcción de un edificio o una vivienda, porque además la forma en la que se efectúa la investigación geotécnica, tanto en campo como en laboratorio, puede diferir en gran medida.

4. Metodología:

Se compone de los procedimientos utilizados para efectuar la investigación de campo, laboratorio, fuentes de información, procesamiento de datos y métodos de análisis.

5. Ensayos de Campo:

Se especifican los procedimientos empleados para realizar la investigación de campo, equipos utilizados, normativa aplicable (ASTM, COVENIN, etc.), número de sondeos efectuados, profundidad de los mismos, cantidad de muestras obtenidas y una breve pero clara justificación de por qué se utilizan tales procedimientos para cumplir con los objetivos planteados en la investigación geotécnica.

Uno de los ensayos de campo más comunes es el SPT
Máquina de perforación para toma de muestras de suelo. Tomado por Ing. Marco Hernández

6. Ensayos de Laboratorio:

El laboratorio juega un papel fundamental en todo proceso de investigación geotécnica. Las muestras obtenidas en campo deben ser procesadas en laboratorio, con la finalidad de obtener parámetros que son utilizados por el ingeniero geotécnico para analizar el comportamiento del terreno y plantear soluciones al sistema «suelo-fundación».

7. Geología:

El analizar el contexto geológico en el que se encuentra el proyecto, significa poder comprender la naturaleza de las diferentes amenazas a las que podría estar expuesto el mismo. No se trata de extraer la teoría clásica existente en los libros de geología, sino más bien comprender que un proyecto concebido en una zona del litoral tendrá una amenaza muy diferente al proyecto que sea concebido a piedemonte. Se trata de analizar no sólo la geología regional sino también la local, que muchas veces determina la existencia de amenazas particulares del sitio, tales como: potencial sismicidad localizada o inducida por presencia de algún depósito de agua cercano, fallas geológicas que pueden ocasionar fenómenos de licuación (pérdida súbita de resistencia al cortante de suelos saturados debido al incremento de presiones de poros ocasionado por vibraciones del terreno por acción sísmica), o presencia de suelos colapsables o expansivos cuya aparición se encuentra determinada por la geología de la zona.

8. Aspectos Sísmicos:

Prácticamente todos los códigos de diseño a nivel mundial suministran una clasificación en función de la amenaza sísmica existente en las diferentes regiones del país (nulas, bajas, intermedia y elevada), lo cual permite asignar un coeficiente de aceleración horizontal y vertical del terreno, que al ser multiplicado por la masa sísmica de la edificación nos permite estimar su respuesta y poder así efectuar su diseño estructural. Dentro de este renglón existe un criterio de clasificación universal de suma importancia, que permite estimar la respuesta más realista de la edificación ante un evento sísmico, y se trata de la forma espectral del terreno que depende de la condición geotécnica del sitio (suelos densos o duros Vs suelos duros o compactos). Una forma de caracterizar la forma espectral del terreno, es a través de correlación con ensayos de campo tales como: el ensayo de penetración estándar (SPT), el ensayo de penetración cónica (CPT) o el ensayo de índice de calidad de la roca (RQD). Ahora bien, esto quiere decir que el Estudio Geotécnico nos va a permitir estimar la repuesta sísmica real de la edificación, en vista de que vamos a poder identificar el comportamiento esperado del sitio en el que nos vamos apoyar, según los lineamientos fijados por el código de diseño sísmico que aplique en el proyecto.

9. Presencia de Nivel Freático y/o Aguas Subterráneas:

Se identifican las profundidades de aguas detectadas en los sondeos, acotando que estos niveles se localizaron en una fecha y condición meteorológica determinada. Esta información será de suma utilidad para el ingeniero geotécnico al momento de emitir recomendaciones de diseño y construcción de los sistemas de fundación, y servirá de alerta a la hora de efectuar excavaciones a cielo abierto y cuáles son las medidas de protección que deben ser acatadas. Esto permitirá identificar posibles patrones de licuación y determinar que tanto pudiese verse afectada la sensibilidad del terreno desde el punto de vista de capacidad portante.

10. Análisis de Resultados de Campo y Laboratorio:

En función de los resultados obtenidos en campo y laboratorio, se emite un análisis de tipo cuantitativo y cualitativo que permitirá construir una matriz del comportamiento geotécnico del sitio.

11. Evaluación de la Capacidad Portante del Terreno en función del Sistema de Fundación Seleccionado (Diseño por Resistencia):

Se debe dejar claro que el terreno por sí sólo no va a manifestar una capacidad portante admisible determinada, sino que va a depender del tipo de sistema de fundación seleccionado y de la geometría del mismo, es decir, es incorrecto decir: «ese suelo tiene una capacidad portante de 1 kgf/cm2”, lo correcto sería decir: “el terreno manifiesta una capacidad portante de 1 kgf/cm2 para un sistema de fundación diseñado con zapatas de dimensiones 1.5 m x 1.5 m y para una profundidad de desplante (Df) de 1.8 m”; en vista de que cualquier variación en el tipo de cimentación, geometría, dimensiones en planta y profundidad de desplante determinarán una capacidad portante diferente del sistema “suelo-fundación”. En este punto es importante que el ingeniero geotécnico posea un estimado de las cargas de la edificación, con la finalidad de seleccionar el sistema de fundación más adecuado y pueda además reportar un abanico de posibilidades geométricas y de profundidad para el rango de cargas actuantes. De forma ilustrativa podemos indicar que si el sistema de fundación se compone de zapatas, entonces se deberá elaborar una tabla con diferentes tamaños de zapatas y profundidades de desplante que permita abarcar el rango de cargas actuantes, de forma tal que el ingeniero estructural pueda seleccionar las opciones que mejor se adapten a los requerimientos del proyecto. Bajo el mismo esquema, si se trata de un sistema de fundación con pilotes se deberá disponer de una tabla con diferentes diámetros y longitudes, con la finalidad de seleccionar la mejor solución en función del nivel de carga actuante.

12. Cálculo de Asentamientos Esperados (Diseño por Rigidez):

La rigidez infinita no existe en el terreno de fundación, es decir, todos los sistemas de fundación siempre van a sufrir algún nivel de asentamiento, por lo que se hace necesario que se reporte el nivel de asentamiento o deformación esperada del terreno, en función del esfuerzo actuante y la geometría del sistema de fundación seleccionado. La distorsión angular se define como la relación entre el asentamiento diferencial que se origina entre dos apoyos y la distancia que los separa. Si se dispone de información relacionada con la magnitud de los asentamientos esperados y luces promedio del proyecto, se podrán estimar las distorsiones esperadas y se podrán fijar límites máximos de distorsión en función de la arquitectura del proyecto, tipo de acabados y configuración de miembros estructurales. No es lo mismo fijar una distorsión angular máxima para un proyecto donde predominan las fachadas de vidrio que para una edificación donde predomina la mampostería.

13. Conclusiones:

Deben ser claras y precisas, sin ambigüedades. Se debe reportar la conclusión de cada aspecto observado en los puntos anteriores; destacando las prohibiciones que apliquen y que puedan estar referidas al uso de un sistema de fundación en particular o una profundidad límite para algún tipo de excavación. Se concluye en función de los aspectos geológicos, geotécnicos, estructurales, sísmicos, hidráulicos, hidrológicos, y cualquier otro que sea determinante en la solución que deba adoptarse en el proyecto.

14. Recomendaciones:

De tipo geotécnico y estructural para las diferentes propuestas de cimentación suministradas en el informe, recomendaciones de excavaciones, métodos constructivos, control de deformaciones y distorsión angular, medidas de protección en los procesos constructivos, técnicas para el mejoramiento o estabilización de suelos que puediesen estar sometidos a algún tipo de amenaza de tipo geológica o geotécnica, tales como presencia de suelos colapsables, licuables o expansivos. En vista de lo amplio que pueden llegar a ser las recomendaciones, se sugiere elaborar renglones para las diferentes especialidades involucradas en el proyecto, de forma tal que el informe geotécnico posea un enfoque totalmente práctico y funcional.

15. Anexos:

Es tradición colocar en los anexos: el croquis de ubicación de los sondeos, el perfil probable del terreno, el perfil estratigráfico utilizado en el diseño de las cimentaciones, los registros de campo de los sondeos efectuados, planta tipo de la edificación, las planillas de los ensayos de laboratorio, y cualquier otra información que permita complementar los aspectos reportados en el informe. Si se dispone de un extracto de una publicación donde se indiquen técnicas, sugerencias o consejos para efectuar alguno de los procesos contemplados en el proyecto, entonces ¿por qué no incluirlo también?. El estudio geotécnico debe ser una guía de ejecución, de la misma forma como lo son los planos de detalles, la memoria descriptiva o incluso el cómputo métrico de obras.

El sistema “suelo-fundación” debe ser analizado como un todo, donde los aspectos geotécnicos y estructural se convergen en los puntos de apoyo de nuestras edificaciones. La investigación geotécnica es una actividad de ejecución obligatoria cuyo producto será el Estudio Geotécnico, que deberá ser utilizado por los profesionales involucrados en el proyecto tanto en la fase de concepción del mismo como en su fase de construcción.

El original se puede consultar en: http://www.e-zigurat.com/noticias/importancia-estudio-de-suelos/

Deja un comentario

error: Este contenido está protegido.